《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 基于知識(shí)圖譜和協(xié)同過濾算法的多頭注意力網(wǎng)絡(luò)
基于知識(shí)圖譜和協(xié)同過濾算法的多頭注意力網(wǎng)絡(luò)
電子技術(shù)應(yīng)用
康永玲1,2,3
1.中國煤炭科工集團(tuán) 太原研究院有限公司;2.山西天地煤機(jī)裝備有限公司;3.煤礦采掘機(jī)械裝備國家工程實(shí)驗(yàn)室
摘要: 當(dāng)前基于知識(shí)圖譜的推薦方法大多聚焦于知識(shí)關(guān)聯(lián)的編碼機(jī)制,往往忽視了用戶-物品交互中潛在的關(guān)鍵協(xié)同信號(hào),導(dǎo)致現(xiàn)有模型學(xué)習(xí)到的嵌入向量無法有效地表達(dá)用戶和物品在向量空間中的潛在語義。為解決這一問題,提出一種融合知識(shí)圖譜和協(xié)同過濾的多頭注意力網(wǎng)絡(luò)——協(xié)同知識(shí)感知多頭注意力網(wǎng)絡(luò)(CKAN-MH)。該網(wǎng)絡(luò)在傳統(tǒng)的CKAN模型的基礎(chǔ)上引入多頭注意力機(jī)制,以自適應(yīng)地關(guān)注不同特征的子集,通過動(dòng)態(tài)調(diào)整注意力權(quán)重,對(duì)尾實(shí)體進(jìn)行差異化加權(quán)處理。引入多頭注意力機(jī)制后,模型能夠更全面地捕捉數(shù)據(jù)中隱含的復(fù)雜關(guān)系與模式,進(jìn)而顯著提升推薦系統(tǒng)的性能表現(xiàn)。此外,還在三個(gè)真實(shí)數(shù)據(jù)集上應(yīng)用CKAN-MH模型進(jìn)行實(shí)驗(yàn)評(píng)估。實(shí)驗(yàn)結(jié)果表明,CKAN-MH模型在性能上優(yōu)于當(dāng)前多個(gè)主流先進(jìn)基線模型,驗(yàn)證了該模型的有效性和優(yōu)越性。
中圖分類號(hào):TN0 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.256532
中文引用格式: 康永玲. 基于知識(shí)圖譜和協(xié)同過濾算法的多頭注意力網(wǎng)絡(luò)[J]. 電子技術(shù)應(yīng)用,2025,51(8):60-64.
英文引用格式: Kang Yongling. Multi-head attention network based on knowledge graph and collaborative filtering algorithm[J]. Application of Electronic Technique,2025,51(8):60-64.
Multi-head attention network based on knowledge graph and collaborative filtering algorithm
Kang Yongling1,2,3
1.CCTEG Taiyuan Research Institute Co., Ltd.;2.Shanxi Tiandi Coal Mining Machinery Co., Ltd.;3.China National Engineering Laboratory for Coal Mining Machinery
Abstract: Most current recommendation methods based on knowledge graphs focus on the encoding mechanism of knowledge associations, often neglecting the potential key collaborative signals in user-item interactions. This leads to the learned embedding vectors of existing models being unable to effectively represent the latent semantics of users and items in the vector space. To address this issue, this paper proposes a multi-head attention network that integrates knowledge graphs and collaborative filtering - the collaborative knowledge-aware multi-head attention network (CKAN-MH). This network introduces a multi-head attention mechanism on the basis of the traditional CKAN model to adaptively focus on different subsets of features and perform differential weighting of tail entities by dynamically adjusting attention weights. After introducing the multi-head attention mechanism, the model can more comprehensively capture the complex relationships and patterns hidden in the data, thereby significantly improving the performance of the recommendation system. Additionally, we conducted experimental evaluations on three real datasets using the CKAN-MH model. The experimental results show that the CKAN-MH model outperforms several current mainstream advanced baseline models in terms of performance, verifying the effectiveness and superiority of this model.
Key words : recommendation system;knowledge graph;collaborative filtering;multi-head attention network

引言

隨著信息化時(shí)代的到來以及海量數(shù)據(jù)的涌現(xiàn),用戶越來越難以從龐大的數(shù)據(jù)信息中快速獲取所需物品,為解決這一問題,推薦系統(tǒng)開始成為研究熱點(diǎn)?,F(xiàn)有的基于知識(shí)圖譜的推薦模型主要是GraphRec模型[1]、PippleNet模型[2]和NGCF模型[3]等,其存在一個(gè)較大的問題是在面對(duì)同一頭實(shí)體時(shí),不同的關(guān)系會(huì)產(chǎn)生不同的尾實(shí)體。故存在某兩個(gè)實(shí)體在一種關(guān)系上相似度很高,在其他關(guān)系上相似度較低的情況,如果只依據(jù)某一種關(guān)系進(jìn)行推薦時(shí),有可能影響推薦效果。

為更好解決上述問題,本文提出一種基于知識(shí)圖譜和協(xié)同過濾多頭注意力網(wǎng)絡(luò):協(xié)同知識(shí)感知多頭注意力網(wǎng)絡(luò)(CKAN-MH),通過增強(qiáng)知識(shí)圖譜的表征學(xué)習(xí)性能來提高模型推薦能力。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://m.theprogrammingfactory.com/resource/share/2000006630


作者信息:

康永玲1,2,3

(1.中國煤炭科工集團(tuán) 太原研究院有限公司,山西 太原 030006;

2.山西天地煤機(jī)裝備有限公司,山西 太原 030006;

3.煤礦采掘機(jī)械裝備國家工程實(shí)驗(yàn)室,山西 太原 030006)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。